Abstract
Implantable motor neuroprosthetic systems can restore function to individuals with significant disabilities, such as spinal cord injury, stroke, cerebral palsy, and multiple sclerosis. Neuroprostheses provide restored functionality by electrically activating paralysed muscles in coordinated patterns that replicate (enable) controlled movement that was lost through injury or disease. It is important to consider the general topology of the implanted system itself. The authors demonstrate that the wired multipoint implant technology is practical and feasible as a basis for the development of implanted multi-function neuroprosthetic systems. The advantages of a centralised power supply are significant. Heating due to recharge can be mitigated by using an actively cooled external recharge coil. Using this approach, the time required to perform a full recharge was significantly reduced. This approach has been demonstrated as a practical option for regular clinical use of implanted neuroprostheses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.