Abstract

This study predicts the powering performance of a semi-displacement ship, both without and with a Hull Vane (HV). HV is an energy-saving appendage fixed at the transom bottom of the ship's hull. Although the HV is commercially known as a successful resistance-reducing device, there are no studies in the literature examining its effect on propulsion performance in detail. In this study, the effect of the HV on the propulsion performance is investigated and a practical method is proposed as an engineering application to reduce the computation time. Initially, the idealized disc model based on Blade Element Theory (BET) is preferred to create a thrust force instead of using an entire physical propeller. The dynamic motions of the ship are reflected in the computational analysis. Subsequently, the sliding mesh technique, which models the exact propeller geometry, is implemented to calculate the self-propulsion characteristics without and with HV. These computations are achieved by employing a two-phase flow solver available in OpenFOAM. This study provides a significant demonstration to clarify the effect of HV on powering performance. It not only decreases effective power by 11.41% but also increases the propulsive efficiency by 2.1%, which reduces the brake power by 14.61% in total at service speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.