Abstract

Goldfish retinal ganglion cell (RGC) axons, regenerating in vitro, have varicosities, intervening phase-dense inclusions (IPDIs) and particles that are mobile. Varicosities contain an aggregate complex of cytomembranes embedded in a cytoskeletal matrix, and, when they saltate, they represent a form of bulk transport. While movement of varicosities is normally infrequent, the incidence of movement can be greatly increased by alkalinization with NH 4Cl. However, alkalinization also lowers the phase density of varicosities to reveal that motile hyperdense particles appear to be responsible for powering the translocation of varicosities and IPDIs. Other effects of alkalinization include a selective arrest of all anterograde movements and approximately a 10-fold reduction in the rate of retrograde mobility of particles and IPDIs. In mildly permeabilized axons, 20 μM orthovanadate selectively arrests retrogradely directed particle movements, while 100 μM arrests both antero- and retrograde transport. In addition to demonstrating in RGC axons that antero- and retrograde mechanisms exhibit differential pharmacological and pH sensitivities, the observations indicate that a heterogenous bulk mass can be translocated in growing axons by a passive ‘piggyback’ mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.