Abstract

While galvanic coupling for intrabody communications has been proposed lately by different research groups, its use for powering active implantable medical devices remains almost non-existent. Here it is presented a simple analytical model able to estimate the attainable power by galvanic coupling based on the delivery of high frequency (>1 MHz) electric fields applied as short bursts. The results obtained with the analytical model, which is in vitro validated in the present study, indicate that time-averaged powers above 1 mW can be readily obtained in very thin (diameter < 1 mm) and short (length < 20 mm) elongated implants when fields which comply with safety standards (SAR < 10 W/kg) are present in the tissues where the implants are located. Remarkably, the model indicates that, for a given SAR, the attainable power is independent of the tissue conductivity and of the duration and repetition frequency of the bursts. This study reveals that galvanic coupling is a safe option to power very thin active implants, avoiding bulky components such as coils and batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.