Abstract

Living systems require a sustained supply of energy and nutrients to survive. These nutrients are ingested, transformed into low-energy waste products, and excreted. In contrast, synthetic DNA strand-displacement reactions typically run within closed systems provided with a finite initial supply of reactants. Once the reactants are consumed, all net reactions halt and the system ceases to function. Here we run DNA strand-displacement reactions in a continuous flow reactor, infusing fresh reactants and withdrawing waste, enabling the system to dynamically update its outputs in response to changing inputs. Running DNA strand-displacement reactions inside of continuous flow reactors allows the system to be re-used for multiple rounds of computation, which could enable the execution of more elaborate information processing tasks, including single-rail negation and sequential logic circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.