Abstract

Detecting structural changes in volatility is important for understanding volatility dynamics and stylized facts observed for financial returns such as volatility persistence. We propose modified CUSUM and LM tests that are built on a robust estimator of the long-run variance of squared series. We establish conditions under which the new tests have standard null distributions and diverge faster than standard tests under the alternative. The theory allows smooth and abrupt structural changes that can be small. The smoothing parameter is automatically selected such that the proposed test has good finite-sample size and meanwhile achieves decent power gain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.