Abstract
Doping has proven to be a critical tool for enhancing the performance of organic semiconductors in devices like organic light-emitting diodes. However, the challenge in working with high-ionization-energy (IE) organic semiconductors is to find p-dopants with correspondingly high electron affinity (EA) that will improve the conductivity and charge carrier transport in a film. Here, we use an oxidant that has been recently recognized to be a very strong p-type dopant, hexacyano-1,2,3-trimethylene-cyclopropane (CN6-CP). The EA of CN6-CP has been previously estimated via cyclic voltammetry to be 5.87 eV, almost 300 meV higher than other known high-EA organic molecular oxidants. We measure the frontier orbitals of CN6-CP using ultraviolet and inverse photoemission spectroscopy techniques and confirm a high EA value of 5.88 eV in the condensed phase. The introduction of CN6-CP in a film of large-band-gap, large-IE phenyldi(pyren-1-yl)phosphine oxide (POPy2) leads to a significant shift of the Fermi level toward the highest occupied molecular orbital and a 2 orders of magnitude increase in conductivity. Using CN6-CP and n-dopant (pentamethylcyclopentadienyl)(1,3,5-trimethylbenzene)ruthenium (RuCp*Mes)2, we fabricate a POPy2-based rectifying p-i-n homojunction diode with a 2.9 V built-in potential. Blue light emission is achieved under forward bias. This effect demonstrates the dopant-enabled hole injection from the CN6-CP-doped layer and electron injection from the (RuCp*Mes)2-doped layer in the diode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.