Abstract
Combination of lightweight and superior electrical conductive performance is charming for the application of macroscopic graphene foam composite. A porous carbon nanotubes/reduced graphene oxide (CNTs/RGO) foam composite are prepared by freeze-drying and in-situ catalytic grown methods. The CNTs/RGO foam composite consists of interconnected RGO nanosheets as the 3D frame and in-situ growth CNTs as the electromagnetic wave (EM) absorbing reinforcement, which grow on graphene substrate. The in-situ grown CNTs on graphene nanosheets lead to the enhancement of conductive and polarization loss, which results in the enhancement of absorption shielding performance. The CNTs/RGO foam composites with different CNT loading are prepared to investigate their EM shielding properties in X-band. The EM shielding effectiveness (SE) of CNTs/RGO foam composite reaches 31.2 dB with 2 mm thickness, especially the specific EMI shielding effectiveness reaches 547 dB cm3/g with an ultralight density of 57 mg cm−3, the absorption is the primary shielding mechanism. Furthermore, SE value reaches 49 dB with thickness of 3.1 mm. Owing to the unique 3D foam hierarchical architecture, light density and outstanding SE performance, our work shows a promising designable approach of preparing CNTs/RGO foam composite to lightweight and absorption type EMI shielding materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Carbon
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.