Abstract
To tackle important combinatorial optimization problems, a variety of annealing-inspired computing accelerators, based on several different technology platforms, have been proposed, including quantum-, optical- and electronics-based approaches. However, to be of use in industrial applications, further improvements in speed and energy efficiency are necessary. Here, we report a memristor-based annealing system that uses an energy-efficient neuromorphic architecture based on a Hopfield neural network. Our analogue–digital computing approach creates an optimization solver in which massively parallel operations are performed in a dense crossbar array that can inject the needed computational noise through the analogue array and device errors, amplified or dampened by using a novel feedback algorithm. We experimentally show that the approach can solve non-deterministic polynomial-time (NP)-hard max-cut problems by harnessing the intrinsic hardware noise. We also use experimentally grounded simulations to explore scalability with problem size, which suggest that our memristor-based approach can offer a solution throughput over four orders of magnitude higher per power consumption relative to current quantum, optical and fully digital approaches. A memristor-based annealing system that uses an analogue neuromorphic architecture based on a Hopfield neural network can solve non-deterministic polynomial (NP)-hard max-cut problems in an approach that is potentially more efficient than current quantum, optical and digital approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.