Abstract

Powered robotic exoskeletons are a potential intervention for gait rehabilitation in stroke to enable repetitive walking practice to maximize neural recovery. As this is a relatively new technology for stroke, a scoping review can help guide current research and propose recommendations for advancing the research development. The aim of this scoping review was to map the current literature surrounding the use of robotic exoskeletons for gait rehabilitation in adults post-stroke. Five databases (Pubmed, OVID MEDLINE, CINAHL, Embase, Cochrane Central Register of Clinical Trials) were searched for articles from inception to October 2015. Reference lists of included articles were reviewed to identify additional studies. Articles were included if they utilized a robotic exoskeleton as a gait training intervention for adult stroke survivors and reported walking outcome measures. Of 441 records identified, 11 studies, all published within the last five years, involving 216 participants met the inclusion criteria. The study designs ranged from pre-post clinical studies (n = 7) to controlled trials (n = 4); five of the studies utilized a robotic exoskeleton device unilaterally, while six used a bilateral design. Participants ranged from sub-acute (<7 weeks) to chronic (>6 months) stroke. Training periods ranged from single-session to 8-week interventions. Main walking outcome measures were gait speed, Timed Up and Go, 6-min Walk Test, and the Functional Ambulation Category. Meaningful improvement with exoskeleton-based gait training was more apparent in sub-acute stroke compared to chronic stroke. Two of the four controlled trials showed no greater improvement in any walking outcomes compared to a control group in chronic stroke. In conclusion, clinical trials demonstrate that powered robotic exoskeletons can be used safely as a gait training intervention for stroke. Preliminary findings suggest that exoskeletal gait training is equivalent to traditional therapy for chronic stroke patients, while sub-acute patients may experience added benefit from exoskeletal gait training. Efforts should be invested in designing rigorous, appropriately powered controlled trials before powered exoskeletons can be translated into a clinical tool for gait rehabilitation post-stroke.

Highlights

  • Stroke is a leading cause of acquired disability in the world, with increasing survival rates as medical care and treatment techniques improve [1]

  • This review focused exclusively on the Hybrid Assistive Limb (HAL) exoskeleton (Cyberdyne, Japan), and found beneficial effects on gait function and walking independence; the results were combined generally across all included patient populations and not for stroke

  • No studies reported adverse effects on the therapists. This scoping review was conducted to map the literature surrounding the use of powered robotic exoskeletons for gait retraining for individuals after stroke and to identify preliminary findings and areas where further research is required

Read more

Summary

Introduction

Stroke is a leading cause of acquired disability in the world, with increasing survival rates as medical care and treatment techniques improve [1]. Powered robotic exoskeletons are a recently developed technology that allows individuals with lower extremity weakness to walk [9]. Powered exoskeletons were originally designed to be used as an assistive device to allow individuals with complete spinal cord injury to walk [10]. Because they allow for walking without overhead body weight support or a treadmill, they have gained attention as an alternate intervention for gait rehabilitation in other populations such as stroke where repetitive gait training has been shown to yield improvements in walking function [11, 12]. Several powered exoskeletons are already commercially available, such as the Ekso (Ekso Bionics, USA), Rewalk (Rewalk Robotics, Israel), and Indego (Parker Hannifin, USA) exoskeletons, with more being developed

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.