Abstract

Balances of multiple varying forces must be the basis for the unusually great dynamic stability of swimming pufferfishes. We used high-speed digital video recordings to study biomechanics and kinematics of rectilinear swimming at different speeds of five porcupine puffers in a water tunnel. We measured critical swimming speeds (U crit ); fin biomechanics, kinematics, and coordination; recoil movements; and gait changes. Major propulsors were pectoral fins at lower speeds; dorsal, anal, and caudal fins at higher speeds. Precise coordination of fin movements produced small recoil movements at speeds below U crit . The unusual body shape probably contributes to unconscious stability control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call