Abstract

This work presents a method for global routing (GR) to minimize interconnect power. We consider design with multi-supply voltage, where level converters are added to nets that connect driver cells to sink cells of higher supply voltage. The level converters are modeled as additional terminals during GR. Given an initial GR solution obtained with the objective of minimizing wirelength, we propose a GR method to detour nets to further save the interconnect power. When detouring routes via this procedure, overflow is not increased, and the increase in wirelength is bounded. The power saving opportunities include: 1) reducing the area capacitance of the routes by detouring from the higher metal layers to the lower ones, 2) reducing the coupling capacitance between adjacent routes by distributing the congestion, and 3) considering different power-weights for each segment of a routed net with level converters (to capture its corresponding supply voltage and activity factor). We present a mathematical formulation to capture these power saving opportunities and solve it using integer programming techniques. In our simulations, we show considerable saving in an interconnect power metric for GR, without any wirelength degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call