Abstract

Considering the virtual network infrastructure as a service, optical network virtualization can facilitate the physical infrastructure sharing among different clients and applications that require optical network resources. Obviously, mapping multiple virtual network infrastructures onto the same physical network infrastructure is one of the greatest challenges related to optical network virtualization in flexible bandwidth optical networks. In order to efficiently address the virtual optical network (VON) provisioning problem, we can first obtain the virtual links' order and the virtual nodes' order based on their characteristics, such as the bandwidth requirement on virtual links and computing resources on virtual nodes. We then preconfigure the primary and backup paths for all node-pairs in the physical optical network, and the auxiliary graph is constructed by preconfiguring primary and backup paths. Two VON mapping approaches that include the power-aware virtual-links mapping (PVLM) approach and the power-aware virtual-nodes mapping (PVNM) approach are developed to reduce power consumption for a given set of VONs in flexible bandwidth optical networks with the distributed data centers. Simulation results show that our proposed PVLM approach can greatly reduce power consumption and save spectrum resources compared to the PVNM approach for the single-line rate and the mixed-line rate in flexible bandwidth optical networks with the distributed data centers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call