Abstract

In this paper, we consider the generalized power model in which the focus is the dynamic power and the static power, and we study the problem of the canonical sporadic task scheduling based on the rate-monotonic (RM) scheme. Moreover, we combine with the dynamic voltage scaling (DVS) and dynamic power management (DPM). We present a static low power sporadic tasks scheduling algorithm (SSTLPSA), assuming that each task presents its worst-case work-load to the processor at every instance. In addition, a more energy efficient approach called a dynamic low power sporadic tasks scheduling algorithm (DSTLPSA) is proposed, based on reclaiming the dynamic slack and adjusting the speed of other tasks on-the-fly in order to reduce energy consumption while still meeting the deadlines. The experimental results show that the SSTLPSA algorithm consumes 26.55–38.67% less energy than that of the RM algorithm and the DSTLPSA algorithm reduces the energy consumption up to 18.38–30.51% over the existing DVS algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.