Abstract

In the present study, the concept of utilizing two circular cam-track disks, of the same central angle, in combination with one circular roller is presented. The roller is restrained to move within a vertical groove, and at the same time it rotates with rolling-contact on both cam tracks. When the upper cam is fully travelled by the roller, the same occurs with the lower one, despite their different lengths. Therefore, during the rolling contact, the two cams always sweep the same central angle. The aforementioned configuration of the two circular arcs may be considered as a unit cell, which can be repeated an even number of times, and when folded forms a closed circular groove between two cam-track disks. For better understanding, a manufactured prototype and 3D CAD-models have been developed. The operation of this setup as a gearless automotive differential is demonstrated by performing two bench experiments, which are then explained by a simplified mechanical model. The latter focuses on the implementation of the principle of the inclined plane, in which an upper limit of the inclination angle is imposed in accordance with the coefficient of friction at the friction disks. Previous patents on gearless differentials are discussed and other possible applications in mechanical engineering are outlined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call