Abstract

The alternating current (AC) total interference of power lines may pose a threat to personnel and equipment in its vicinity. The main objective of this work is to determine the electromagnetic distribution and induced voltages on human body, equipment, and houses due to the AC total interference for different soil resistivities. The electromagnetic field and induced voltages may cause health problems to the human body and put it at risk. Two main approaches were used to compute the electromagnetic and induced voltages, namely the field approach, which is based on electromagnetic field distribution, and the circuit approach, which uses the circuit grounding analysis to compute the conductive interference and then uses the circuit based models to compute the inductive interference. Human body, steel houses and 10-km-long transmission line were modelled. The soil resistivity was varied, and the induced voltages obtained from both approaches were compared. Soil resistivity and soil structure are important parameters that affect the AC interference level. The results show that the touch voltage increases when the distance between electromagnetic source and human body increases. For high soil resistivity, the danger of the touch voltage becomes more prominent compared to that for low soil resistivity. Power system voltage level and soil resistivity are two key factors influencing the induced voltage level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.