Abstract

The power transfer efficiency of a partially obstructed wireless link operating in the Fresnel region is studied in this work. The wireless link consists of two equal apertures, axially aligned, radiating weakly-diffractive beams (truncated Bessel beams). A metallic obstacle is considered along the propagation path of the radiated beam to analyze its impact on the power transfer efficiency with respect to a clear line of sight link. The power transfer efficiency in the obstructed case is derived by resorting to a scattered field formulation. In the proposed approach, the distance between the apertures is considered larger than their radius, which is also bigger than the operating wavelength. A paraxial approximation is then applied to the formulation. Numerical results validate the proposed approach. It appears that the transverse propagation constant of the Bessel Beam and resulting non-diffractive range strongly affects the distance of operation of the wireless link in both the clear and obstructed cases. In addition, we observe how the self-healing property of Bessel beams preserves the efficiency of the partially obstructed link by establishing a resilient link under defined conditions for the propagating beam and size of the obstruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.