Abstract

Loosely coupled inductive power transfer (LCIPT) systems are designed to deliver power efficiently from a stationary primary source to one or more movable secondary loads over relatively large air gaps via magnetic coupling. In this paper, a general approach is presented to identify the power transfer capability and bifurcation phenomena (multiple operating modes) for such systems. This is achieved using a high order mathematical model consisting of both primary and secondary resonant circuits. The primary compensation is deliberately designed to make the primary zero phase angle frequency equal the secondary resonant frequency to achieve maximum power with minimum VA rating of the supply. A contactless electric vehicle battery charger was used to validate the theory by comparing the measured and calculated operational frequency and power transfer. For bifurcation-free operation, the power transfer capability and controllability are assured by following the proposed bifurcation criteria. Where controllable operation within the bifurcation region is achievable, a significant increase in power is possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.