Abstract
Power-to-X concepts promise a reduction of greenhouse gas emissions simultaneously guaranteeing a safe energy supply even at high share of renewable power generation, thus becoming a cornerstone of a sustainable energy system. Power-to-syngas, that is, the electrochemical conversion of steam and carbon dioxide with the use of renewably generated electricity to syngas for the production of synfuels and high-value chemicals, offers an efficient technology to couple different energy-intense sectors, such as "traffic and transportation" and "chemical industry". Syngas produced by co-electrolysis can thus be regarded as a key-enabling step for a transition of the energy system, which offers additionally features of CO2 -valorization and closed carbon cycles. Here, we discuss advantages and current limitations of low- and high-temperature co-electrolysis. Advances in both fundamental understanding of the basic reaction schemes and stable high-performance materials are essential to further promote co-electrolysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.