Abstract

<h3>Abstract</h3> Traditional X-ray diffraction data collected at cryo-temperatures have delivered invaluable insights into the three-dimensional structures of proteins, providing the backbone of structure-function studies. While cryo-cooling mitigates radiation damage, cryo-temperatures can alter protein conformational ensembles and solvent structure. Further, conformational ensembles underlie protein function and energetics, and recent advances in room-temperature X-ray crystallography have delivered conformational heterogeneity information that is directly related to biological function. The next challenge is to develop a robust and broadly applicable method to collect single-crystal X-ray diffraction data at and above room temperatures and was addressed herein. This approach provides complete diffraction datasets with total collection times as short as ~5 sec from single protein crystals, dramatically increasing the amount of data that can be collected within allocated synchrotron beam time. Its applicability was demonstrated by collecting 1.09-1.54 Å resolution data over a temperature range of 293–363 K for proteinase K, thaumatin, and lysozyme crystals. Our analyses indicate that the diffraction data is of high-quality and do not suffer from excessive dehydration or damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call