Abstract

Machine learning algorithms have been widely used in power system transient stability evaluation. The combined application of data analysis and evaluation and neural network provides a new direction for power system transient stability analysis. After the actual power grid is running, there is obviously an imbalance between stable samples and unstable samples. The current deep learning network realizes the power system transient stability assessment method with too many redundant attributes, and the characteristics will inevitably be lost during the data transmission process. This leads to serious problems with the tendency of the training of the data-driven transient stability assessment model. The rough set theory algorithm is introduced to reduce the redundant attributes of power system transient data sets, which simplifies the difficulty of data training. At the same time, as the neural network deepens, the deep residual neural network model has a higher accuracy rate and effectively avoids the “gradient explosion” and “gradient dispersion” problems. Compared with the traditional neural network, it has better Evaluate performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.