Abstract

The main goal of this paper is to formulate power system state estimation (SE) problem as a constrained nonlinear programming problem with various constraints and boundary limits on the state variables. SE forms the heart of entire real time control of any power system. In real time environment, the state estimator consists of various modules like observability analysis, network topology processing, SE and bad data processing. The SE problem formulated in this work is solved using teaching leaning-based optimization (TLBO) technique. Difference between the proposed TLBO and the conventional optimization algorithms is that TLBO gives global optimum solution for the present problem. To show the suitability of TLBO for solving SE problem, IEEE 14 bus test system has been selected in this work. The results obtained with TLBO are also compared with conventional weighted least square (WLS) technique and evolutionary based particle swarm optimization (PSO) technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.