Abstract

Abstract Power system state estimation is a process of real-time online modeling of an electric power system. The estimation is performed with the application of a static model of the system and current measurements of electrical quantities that are encumbered with an error. Usually, a model of the estimated system is also encumbered with an uncertainty, especially power line resistances that depend on the temperature of conductors. At present, a considerable development of technologies for dynamic power line rating can be observed. Typically, devices for dynamic line rating are installed directly on the conductors and measure basic electric parameters such as the current and voltage as well as non-electric ones as the surface temperature of conductors, their expansion, stress or the conductor sag angle relative to the plumb line. The objective of this paper is to present a method for power system state estimation that uses temperature measurements of overhead line conductors as supplementary measurements that enhance the model quality and thereby the estimation accuracy. Power system state estimation is presented together with a method of using the temperature measurements of power line conductors for updating the static power system model in the state estimation process. The results obtained with that method have been analyzed based on the estimation calculations performed for an example system - with and without taking into account the conductor temperature measurements. The final part of the article includes conclusions and suggestions for the further research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.