Abstract
In this paper, the power system with an excitation controller is represented as a class of large-scale, uncertain, interconnected nonlinear continuous-time system in strict-feedback form. Subsequently, dynamic surface control (DSC)-based adaptive neural network (NN) controller is designed to overcome the repeated differentiation of the control input that is observed in the conventional backstepping approach. The NNs are utilized to approximate the unknown subsystem and the interconnection dynamics. By using novel online NN weight update laws with quadratic error terms, the closed-loop signals are shown to be locally asymptotically stable via Lyapunov stability analysis, even in the presence of NN approximation errors in contrast with other NN techniques where a bounded stability is normally assured. Simulation results on the IEEE 14-bus power system with generator excitation control are provided to show the effectiveness of the approach in damping oscillations that occur after disturbances are removed. The end result is a nonlinear decentralized adaptive state-feedback excitation controller for damping power systems oscillations in the presence of uncertain interconnection terms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.