Abstract

In recent years, many researchers have proposed new DC/DC converters in order to meet the fuel cell requirements. The reliability of these DC/DC converters is crucial in order to guarantee the availability of fuel cell systems. In these converters, power switches ranked the most fragile components. In order to enhance the reliability of DC/DC converters, fuel cell systems have to include fault-tolerant topologies. Usually, dynamic redundancy is employed to make a fault-tolerant converter. Despite this kind of converter allows ensuring a continuity of service in case of faults, the use of dynamic redundancy gets back to increase the complexity of the converter. In order to cope with reliability expectations in DC/DC converters, floating interleaved boost converters seem to be the best solution. Indeed, they have much to offer for fuel cells and DC renewable energy sources (i.e. photovoltaic system), including reduced input current ripple and reliability in case of faults. Despite the offered benefits of this topology, operating degraded modes lead up to undesirable effects such as electrical overstress on components and input current ripple increasing. The aim of this paper is to carry out a thorough analysis of these undesirable effects and to propose remedial strategies to minimize them.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call