Abstract

Electronic contact lenses are a promising platform for medical sensors. With these devices a variety of vital signs and medical parameters can be monitored noninvasively and without the risk of foreign body response. However, one current limitation of this technology is the need for an external power supply, resulting in bulky, multi component devices. In this paper, we for the first time investigate and compare the application of abiotic glucose fuel cells and Mg/air batteries as alternative power supply technologies for electronic contact lenses. While abiotic glucose fuel cells harvest energy from metabolites present in tear fluid, Mg/air batteries provide electricity by the oxidation of a sacrificial anode. Considering the space available on standard contact lenses, our results indicate that approx. 40 μW and 2 μW can be generated by Mg/air batteries and glucose fuel cells for a period of at least 24 h, respectively. However, coating galvanic cells with the commonly used contact lens material pHEMA, results in drastically reduced performance, presumably due to hindered mass transport. Nevertheless, even under those circumstances a Mg/air battery can still provide about 7 μW for 24 h, which would already be sufficient for many electronic contact lens applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.