Abstract
Muscle fatigue is a risk factor for developing musculoskeletal disorders during low-load repetitive tasks. The objective of this study was to assess the effect of muscle fatigue on power spectrum changes of upper limb and trunk acceleration and angular velocity during a repetitive pointing task (RPT) and a work task. Twenty-four participants equipped with 11 inertial measurement units, that include acceleration and gyroscope sensors, performed a tea bag filling work task before and immediately after a fatiguing RPT. During the RPT, the power spectrum of acceleration and angular velocity increased in the movement and in 6–12 Hz frequency bands for sensors positioned on the head, sternum, and pelvis. Alternatively, for the sensor positioned on the hand, the power spectrum of acceleration and angular velocity decreased in the movement frequency band. During the work task, following the performance of the fatiguing RPT, the power spectrum of acceleration and angular velocity increased in the movement frequency band for sensors positioned on the head, sternum, pelvis, and arm. Interestingly, for both the RPT and work task, Cohens’ d effect sizes were systematically larger for results extracted from angular velocity than acceleration. Although fatigue-related changes were task-specific between the RPT and the work task, fatigue systematically increased the power spectrum in the movement frequency band for the head, sternum, pelvis, which highlights the relevance of this indicator for assessing fatigue. Angular velocity may be more efficient to assess fatigue than acceleration. The use of low cost, wearable, and uncalibrated sensors, such as acceleration and gyroscope, in industrial settings is promising to assess muscle fatigue in workers assigned to upper limb repetitive tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.