Abstract

$k$-inflation represents the most general single-field inflation, in which the perturbations usually obey an equation of motion with a time-dependent sound speed. In this paper, we study the observational predictions of the $k$-inflation by using the high-order uniform asymptotic approximation method. We calculate explicitly the slow-roll expressions of the power spectra, spectral indices, and running of the spectral indices for both the scalar and tensor perturbations. These expressions are all written in terms of the Hubble and sound speed flow parameters. It is shown that the previous results obtained by using the first-order uniform asymptotic approximation have been significantly improved by the high-order corrections of the uniform asymptotic approximations. Furthermore, we also check our results by comparing them with the ones obtained by other approximation methods, including the Green's function method, WKB approximation, and improved WKB approximation, and find the relative errors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.