Abstract

The values of parameters of support vector machine have close contact with its forecast accuracy. In order to accurately forecast power short-term load,we presented a power short-term load forecasting method based on quantum-behaved particle swarm optimization and support vector machine.First,cauchy distribution was used to improve the quantum particle swarm algorithm.Secondly,the improved quantum particle swarm optimization algorithm was used to optimize the parameter of support vector machine.Finally, the support vector machine was used for power short-term load forecasting. In the proposed method such factors impacting loads as meteorology,weather and date types are comprehensively considered. The experimental results show that the root-mean-square relative error of the proposed method is only 1.90%, which is less than those of SVM and PSO-SVM model by 2.29% and 2.80%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.