Abstract

An integral domain is said to be a half-factorial domain (HFD) if every non-zero element a that is not a unit may be factored into a finite product of irreducible elements, while any other such factorization of a has the same number of irreducible factors. While it is known that a power series extension of a factorial domain need not be factorial, the corresponding question for HFD has been open. In this paper we show that the answer is also negative. In the process we answer in the negative, for HFD, an open question of Samuel for factorial domains by showing that for certain quadratic domains R , and independent variables, Y and T , R [ [ Y ] ] [ [ T ] ] is not HFD even when R [ [ Y ] ] is HFD. The proof hinges on Samuel’s theorem to the effect that a power series, in finitely many variables, over a regular factorial domain is factorial.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.