Abstract

AbstractLet ρ: GQ → GLn(Qℓ) be a motivic ℓ-adic Galois representation. For fixed m > 1 we initiate an investigation of the density of the set of primes p such that the trace of the image of an arithmetic Frobenius at p under ρ is an m-th power residue modulo p. Based on numerical investigations with modular forms we conjecture (with Ramakrishna) that this density equals 1/m whenever the image of ρ is open. We further conjecture that for such ρ the set of these primes p is independent of any set defined by Cebatorev-style Galois-theoretic conditions (in an appropriate sense). We then compute these densities for certain m in the complementary case of modular forms of CM-type with rational Fourier coefficients; our proofs are a combination of the Cebatorev density theorem(which does apply in the CM case) and reciprocity laws applied to Hecke characters. We also discuss a potential application (suggested by Ramakrishna) to computing inertial degrees at p in abelian extensions of imaginary quadratic fields unramified away from p.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.