Abstract
In two previous papers [ Proc. Amer. Math. Soc. 117 (1993), 877- 884], [ J. Number Theory 44 (1993), 214-221], a reciprocity relation for the power residue symbol of odd prime exponent, between Jacobi sums, was conjectured then proved. This is here extended to the case of an arbitrary exponent, as a consequence of an expression for the power residue character of a Jacobi sum, modulo a rational prime power, in terms of Fermat quotients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.