Abstract
Uncertain grid impedance is often common in power distribution networks; therefore, it is crucial to design an efficient controller in this situation. An issue that frequently occurs is the problem of unpredictable grid impedance, which can cause voltage fluctuations, power quality problems, and potential damage to equipment. This work provides a systematic control strategy to tackle these issues by supplying well-regulated power from a DC source to an AC power grid. A linear matrix inequality (LMI)-based robust optimal control is proposed in this paper to provide stability to the inverter system without offset error at the output side. The convergence time to steady state is minimized by solving the LMI problem to maximize the eigen value of the closed-loop system with the inclusion of the uncertainty of the filter parameter and grid impedance. Furthermore, the uncertainties in this study include the potential variation of values for the filters and the grid's impedance. These uncertainties occur because the grid impedance can fluctuate fast in the event of a fault or termination of a transmission line, while the filter's impedance can also be affected by changes in operating temperature. The simulation study of this proposed control includes a comparison between wide and narrow uncertainty ranges, as well as a performance comparison under uncertain parameters. Furthermore, this approach exhibits a lower power ripple in comparison to existing PI control method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robotics and Control Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.