Abstract

Size and number of high-performance data centers are rapidly growing all around the world in recent years. The growth in the leakage power consumption of servers along with its exponential dependence on the ever increasing process variation in nanometer technologies has made it inevitable to move toward variation-aware power reduction strategies in data centers. In this paper, we address the problem of joint server placement and chassis consolidation to minimize power consumption of high-performance computing data centers under process variation. To this end, we introduce two variation-aware server placement heuristics as well as an integer linear programming (ILP)-based server placement method to find the best location of each server in the data center based on its power consumption and the data center heat recirculation model. We then incorporate a novel ILP-based variation-aware chassis consolidation technique to find the optimum task assignment solution under the obtained server placement approach to minimize total power consumption. Experimental results show that by applying the proposed joint variation-aware server placement and chassis consolidation techniques, up to 14.6 % improvement can be obtained at common data center utilization rates compared to state-of-the-art variation-unaware approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.