Abstract

Distributed Generation systems (DGs) using solar power is one of the new trends in power generation. These distributed generating units are integrated to form a micro grid to serve the loads among the locality, which is in connection with the utility grid for power transmission. The elimination of the harmonics in the grid and the usage of solar energy resources in the power electronics applications become famous worldwide. In this work, a Resilient Direct Unbalanced Control (RDUC) algorithm is used to improve the performance of the controller by achieving optimal numerical parameters for photovoltaic power generation - Unified Power Quality Conditioner (PV-UPQC). Then the voltage sag, swell and elimination of current harmonics are used to study the effects of proposed RDUC algorithm for photovoltaic feed UPQC system. According to the evaluations, the proposed unified power quality conditioner eliminates both the supply current distortion caused by a non-linear load and the load voltage distortion introduced after adding fifth and seventh harmonics to the Alternating Current (AC) mains voltage. To validate the simulation results of Resilient Direct Unbalanced Control scheme, tests are performed under various operating conditions. Test results show the satisfactory behavior under steady state, and dynamic conditions such as load unbalance, insolation variation, voltage sag and swell. Finally, Total Harmonic Distortions (THDs) of proposed optimization-based grid current and grid voltages found within limits of the IEEE standard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.