Abstract

An Air conditioner is mostly used in tropical countries and power-hungry load. The energy consumption of air conditioner increases with rise in the solar irradiation. Therefore, in this paper, an energy management scheme is given to reduce the pressure on the utility grid during the peak hours with the help of photovoltaic (PV) and battery energy storage (BES) integration using the bidirectional dual active bridge (DAB) converter. With recent advancement in semiconductor technology and drives, the air conditioning systems are manufactured with variable frequency drive (VFD) technology. Because of the diode bridge rectifier (DBR), connected at the front end of the VFD the current drawn at the input side is non sinusoidal and peaky in nature. Due to the high power demand, the amplitude of the peak current is significantly high, which deteriorates the power quality of the system. In this paper, this problem is addressed by incorporating a power factor corrector (PFC) boost converter and modulated at unity power factor so that the waveshape of the grid current is maintained sinusoid with low THD. Moreover, the excess generation of the PV array is fed back to battery during the off-peak hours of air conditioner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call