Abstract

Integrating wind farms with electricity transmission networks presents several problems, and power quality plays a vital role among these. This study proposed a novel fuzzy logic controller to reduce the effect of power quality issues in such applications and investigated two different FACTS (Flexible AC Transmission System) devices, the Static Var Compensator (SVC) and the Static Synchronous Compensator (STATCOM). The fuzzy logic controller was designed as a voltage controller to improve power quality. Detailed analysis was carried out to investigate the successful mitigation of voltage sag/swell, active and reactive power improvement, and voltage flickers control by two controllers in a Multi-Terminal Load (MTL) system consisting of wind generators. The results were verified in MATLAB simulations, and a comparison was performed between the proposed shunt controllers. Furthermore, the design of a fuzzy interference system based on Vref (reference voltage) and the voltage measured at STATCOM location signals was investigated and compared with the SVC in terms of voltage sag, voltage swell, voltage flickers, and Total Harmonic Distortions (THD). The proposed fuzzy system was compared with a PI-based STATCOM and SVC. The power quality issues were exacerbated when using Multi-Terminal Load (MTL) in the transmission network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.