Abstract

The current disturbance classification of power quality data often has the problem of low disturbance recognition accuracy due to its large volume and difficult feature extraction. This paper proposes a hybrid model based on distributed compressive sensing and a bi-directional long-short memory network to classify power quality disturbances. A cloud-edge collaborative framework is first established with distributed compressed sensing as an edge-computing algorithm. With the uploading of dictionary atoms of compressed sensing, the data transmission and feature extraction of power quality is achieved to compress power quality measurements. In terms of data transmission and feature extraction, the dictionary atoms and measurements uploaded at the edge are analyzed in the cloud by building a cloud-edge collaborative framework with distributed compressed sensing as the edge algorithm so as to achieve compressed storage of power quality data. For power disturbance identification, a new network structure is designed to improve the classification accuracy and reduce the training time, and the training parameters are optimized using the Deep Deterministic Policy Gradient algorithm in reinforcement learning to analyze the noise immunity of the model under different scenarios. Finally, the simulation analysis of 10 common power quality disturbance signals and 13 complex composite disturbance signals with random noise shows that the proposed method solves the problem of inadequate feature selection by traditional classification algorithms, improves the robustness of the model, and reduces the training time to a certain extent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.