Abstract

There is higher harmonics and electromagnetic interference caused by high-power-density switching power supply during high-frequency and normal operations which affects power quality of switching power supply and also impacts the environment. To solve this problem, this paper proposes a dual digital signal processor (DSP) controller suitable for unified power quality regulators and designs high-power-density switching power supply control system for promoting green environment. The overall structure of the system is divided into two parts, the power main circuit and the control circuit. In the main power circuit, the electromagnetic interference (EMI) filter is used to filter the input AC voltage and convert it into a stable DC voltage. A high-frequency inverter is used to invert the DC voltage into a high-frequency AC voltage to achieve harmonic control and reactive power compensation. In the control circuit, dual DSP controller is used to improve real-time detection, control of the output voltage, and current and driver temperature of the high-power-density switching power supply, while high-precision analysis and processing system collect different information and then achieve the power quality control of the switching power supply based on system software to keep this environment green. The experimental results suggest that the harmonic content of the experimental objects controlled by the system is reduced by 16.7% compared with the existing power quality control and the absolute error of the system is less than 0.02 V which improves the de-noising performance. The power generation systems require that the consumption of natural resources and renewable energy solutions can assist in saving the natural resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call