Abstract
This paper presents the power profile of two high performance dense linear algebra libraries on distributed memory systems, ScaLAPACK and DPLASMA. From the algorithmic perspective, their methodologies are opposite. The former is based on block algorithms and relies on multithreaded BLAS and a two-dimensional block cyclic data distribution to achieve high parallel performance. The latter is based on tile algorithms running on top of a tile data layout and uses fine-grained task parallelism combined with a dynamic distributed scheduler (DAGuE) to leverage distributed memory systems. We present performance results (Gflop/s) as well as the power profile (Watts) of two common dense factorizations needed to solve linear systems of equations, namely Cholesky and QR. The reported numbers show that DPLASMA surpasses ScaLAPACK not only in terms of performance (up to 2X speedup) but also in terms of energy efficiency (up to 62 %).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.