Abstract
In this paper, an approach of improving power generation of microbial fuel cells (MFCs) by using a HSO4− doped polyaniline modified carbon cloth anode was reported. The modification of carbon cloth anode was accomplished by electrochemical polymerization of aniline in 5% H2SO4 solution. A dual-chamber MFC reactor with the modified anode achieved a maximum power density of 5.16Wm−3, an internal resistance of 90Ω, and a start-up time of 4 days, which was respectively 2.66 times higher, 65.5% lower, and 33.3% shorter than the corresponding values of the MFC with unmodified anode. Evidence from X-ray photoelectron spectroscopy and scanning electron microscopy results proved that the formation of biofilm on the anode surface could prevent the HSO4− doped polyaniline to be de-doped, and the results from electrochemical tests confirmed that the electrochemical activity of the modified anode was enhanced significantly after inoculation. Charge transfer was facilitated by polyaniline modification. All the results indicated that the polyaniline modification on the anode was an efficient approach of improving the performance of MFCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.