Abstract
This paper demonstrates a first-order, linear power estimation model that uses performance counters to estimate run-time CPU and memory power consumption of the Intel PXA255 processor. Our model uses a set of power weights that map hardware performance counter values to processor and memory power consumption. Power weights are derived offline once per processor voltage and frequency configuration using parameter estimation techniques. They can be applied in a dynamic voltage/frequency scaling environment by setting six descriptive parameters. We have tested our model using a wide selection of benchmarks including SPEC2000, Java CDC and Java CLDC programming environments. The accuracy is quite good; average estimated power consumption is within 4% of the measured average CPU power consumption. We believe such power estimation schemes can serve as a foundation for intelligent, power-aware embedded systems that dynamically adapt to the device's power consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.