Abstract
Modern Monte–Carlo codes (e.g. MCNP) allow calculation of the power density distribution in 3D geometry assuming detailed geometry without unit-cell homogenization. The power density distribution (and its maximum value—the peaking) can be calculated ‘point-wise’ with the resolution of approximately 1 mm. Results of the detailed power density distribution calculated by MCNP are presented for 250 kW TRIGA Mark II reactor, assuming various realistic and hypothetical core-loading patterns with focus on the mixed cores. Combinations of 8.5 w/o, 12 w/o, 20 w/o and 30 w/o low-enriched (20%) fresh TRIGA fuel rods are systematically treated in the mixed cores. The power peaking factor value and position strongly depends on the core configuration. Power peakings are usually found in fuel rods with higher uranium content especially if they are inserted near the core centre. The results are conservative and can be applied in planning realistic mixed core-loading patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.