Abstract
Peripherally excited phased arrays have been demonstrated as an effective way to realize some aspects of phased array performance with a simple design and reduced cost. This work develops a method to realize shaped beams with peripherally excited arrays by controlling the relative magnitude and phase of the antenna’s peripheral sources. Through a simple model of fields in a parallel-plate waveguide, a linear system of equations can be defined and solved to find the peripheral source excitations that best approximate a desired field pattern. This model is used to solve for a uniform broadside beam, and yields a higher aperture illumination efficiency than a broadside beam obtained from an equal-amplitude excitation. A cosecant beam is also synthesized, showing good agreement with the goal beam pattern. The linear system of equations can be easily integrated into other beam synthesis techniques for increased design flexibility. A particle swarm optimization is used to solve for controlled side lobe-levels, flat-top and multi-beam patterns. Beams realized with full-wave simulation show good agreement with the ideal and predicted beams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.