Abstract

The aims of this study were to: (i) describe the time course of the decrease in power output at the moderate-to-heavy intensity transition during prolonged exercise; (ii) investigate the association between durability of the moderate-to-heavy intensity transition and exercise capacity; and (iii) explore physiological correlates of durability of the moderate-to-heavy intensity transition. Twelve trained cyclists (age: 40 ± 8y, O2peak: 52.3 ± 5.2mL·min-1·kg-1) performed an exhaustive cycling protocol involving alternating incremental exercise tests to determine power output at the moderate-to-heavy intensity transition via the first ventilatory threshold (VT1), and 30-min bouts at 90% of the power output at the previously estimated VT1 in the rested state. The individual time course of VT1 was modelled using linear and second-order polynomial functions, and time to a 5% decrease in VT1 (Δ5%VT1) was estimated using the best-fitting model. Power output at VT1 decreased according to a second-order polynomial function in 11 of 12 participants. Time-to-task failure (234 ± 66 min) was correlated with Δ5%VT1 (139 ± 78 min, rs = 0.676, p = 0.016), and these were strongly correlated with absolute and relative rates of fat oxidation at specific exercise intensities measured during the incremental test performed in the rested state. These data: (i) identify a non-linear time course of decreases in the moderate-to-heavy intensity transition during prolonged exercise; (ii) support the importance of durability of the moderate-to-heavy intensity transition in prolonged exercise capacity; and (iii) suggest durability of the moderate-to-heavy intensity transition is related to fat oxidation rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call