Abstract
Time domain NMR (TD-NMR) has been widely used on the analysis of liquids or liquid components in heterogeneous materials such as food, biological tissues, synthetic and bio polymers, oil-bearing rocks, biomasses and cement-based materials. The use of TD-NMR for studying solid and soft mater has been growing in number and variety of applications, mostly for organic systems where the detection of 1H signals is highly advantageous. However, the strong 1H–1H dipolar interactions in solids make the 1H FID to decay in the same order of the dead time of most commercially available NMR probe heads. Thus, solid echoes are often used for recovering signals from solid components. In this article we reinvestigate the time-reversal solid-echo pulse sequence proposed by Rhim and Kessemeier, seeking for optimal pulse power and timing conditions that maximize its efficiency on recovering 1H signals from rigid segments. We show that under these optimized conditions, which we denote as Rhim and Kessemeier - Radiofrequency Optimized Solid-Echo (RK-ROSE), the experiment can be more efficient than its most popular counterparts Solid-Echo (SE) and mixed-Magic Sandwich Echoes (mixed-MSE). Our results also suggest that, despite the finite pulse power, with current probe technology the RK-ROSE experiment is potentially able to provide an accurate estimation of rigid components, without relying on an external calibration using multiple standard samples, as usually done in SFC analysis of the FID signal. At last, we demonstrate that RK-ROSE can be adapted as a simple filter to supress signals from mobile segments in heterogeneous materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.