Abstract

In this paper, power is optimized for an endoreversible closed intercooled regenerated Brayton cycle coupled to constant-temperature heat reservoirs in the viewpoint of finite-time thermodynamics (FTT) or entropy generation minimization (EGM). The effects of some design parameters, including the cycle heat reservoir temperature ratio and total heat exchanger inventory, on the maximum power and the corresponding efficiency are analyzed by numerical examples. The analysis shows that the cycle dimensionless power can be optimized by searching the optimum heat conductance distributions among the hot- and cold-side heat exchangers, the regenerator and the intercooler for fixed total heat exchanger inventory, and by searching the optimum intercooling pressure ratio. When the optimization is performed with respect to the total pressure ratio of the cycle, the maximum dimensionless power can be maximized again.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.