Abstract

Device-to-Device (D2D) communication can be used to improve system capacity and energy efficiency (EE) in cellular networks. One of the critical challenges in D2D communications is to extend network lifetime by efficient and effective resource management. Deep reinforcement learning (RL) provides a promising solution for resource management in wireless communication systems. This letter aims to maximise the EE while satisfying the system throughput constraints as well as the quality of service (QoS) requirements of D2D pairs and cellular users in an underlay D2D communication network. To achieve this, a deep RL based dynamic power optimization algorithm with dynamic rewards is proposed. Moreover, a novel algorithm with two parallel deep Q networks (DQNs) is designed to maximize the EE of the considered network. The proposed deep RL based power optimization method with dynamic rewards achieves higher EE while satisfying the system throughput requirements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.