Abstract
Multi-FPGA platforms like Amazon Web Services F1 are perfect to accelerate multi-kernel pipelined applications, like Convolutional Neural Networks (CNNs). To reduce energy consumption, we propose to upload at runtime the best power-optimized CNN implementation for a given throughput constraint. Our design method gives the best number of parallel instances of each kernel, their allocation to the FPGAs, the number of powered-on FPGAs and their clock frequency. This is obtained by solving a mixed-integer, non-linear optimization problem that models power and performance of each component, as well as the duration of the computation phases—data transfer between a host CPU and the FPGA memory (typically DDR), data transfer between DDR and FPGA, and FPGA computation. The results show that the power saved compared to simply clock gating the fastest implementation is obviously very high, but it is also much more significant than simply scaling the frequency of the fastest implementation or replicating the slowest implementation on multiple FPGAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems II: Express Briefs
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.