Abstract

BackgroundThe purpose of this study was to evaluate the coherence between three different methods assessing the power driven from a counter movement jump (CMJ); the Powertimer 300-series contact mat (C-mat), the MuscleLab 4010 infrared mat (IR-mat) and the MuscleLab 4010 linear encoder (M-encoder), and to evaluate the test-retest reliability of the M-encoder.MethodsTwenty-two males and 29 female, elite athletes performed two test sessions with three days in between. Each test session included counter movement jumps (CMJ) performed on a Smith-machine with external loads of 40 kg. Jump height and flight time were assessed with C-mat and IR-mat, and power was additionally assessed with C-mat. Variables analyzed from the M-encoder were average power (AP), average force (AV), average velocity (AV), and distance (D).ResultsThe results from the C-mat were systematically higher than the ones obtained from the M-encoder and IR-mat. The correlation between the C-mat, M-encoder and the IR-mat was strong (rp = 0.95-0.98). The results showed a high test-retest reliability for all indices assessed with the M-encoder, AP (rp = 0.97, p < 0.001; TE% = 3.9%), AF (rp = 0.99, p < 0.001; TE% = 1.4%). Furthermore, the AV had high values (rp = 0.94, p < 0.001; TE% = 2.9%) as well as D (rp = 0.87, p < 0.001; TE% = 5.4%).ConclusionIt is important to use the same equipment in both pre- and post-testing, since all three methods were reliable, coherent but not interchangeable to each other.

Highlights

  • The purpose of this study was to evaluate the coherence between three different methods assessing the power driven from a counter movement jump (CMJ); the Powertimer 300-series contact mat (C-mat), the MuscleLab 4010 infrared mat (IR-mat) and the MuscleLab 4010 linear encoder (M-encoder), and to evaluate the test-retest reliability of the M-encoder

  • Since no main effect was seen by session between the men and women (Table 1), the groups were analyzed as one group to increase the statistical power of the calculations

  • Assessments of flight time and jump height gave higher values assessed with the C-mat compared to the IR-mat in ms and cm respectively

Read more

Summary

Introduction

The purpose of this study was to evaluate the coherence between three different methods assessing the power driven from a counter movement jump (CMJ); the Powertimer 300-series contact mat (C-mat), the MuscleLab 4010 infrared mat (IR-mat) and the MuscleLab 4010 linear encoder (M-encoder), and to evaluate the test-retest reliability of the M-encoder. Generating high power is important for many elite athletes and the use of loaded vertical jumps as an exercise-training method has been shown to be effective to increase muscular strength and power [3,4]. Vertical jumps are commonly used to assess an individual’s muscular strength and power [3,5,6]. Countermovement jump (CMJ) is one of the most commonly used vertical jump techniques to evaluate muscle strength, power, and jump height in athletes [3,7,8], and have been shown to be reliable during assessments of vertical jump power [9,10]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.